Spline Curves

COMP 575/COMP 770
Motivation: smoothness

• In many applications we need smooth shapes
 – that is, without discontinuities

• So far we can make
 – things with corners (lines, squares, rectangles, …)
 – circles and ellipses (only get you so far!)
Classical approach

- Pencil-and-paper draftsmen also needed smooth curves
- Origin of “spline:” strip of flexible metal
 - held in place by pegs or weights to constrain shape
 - traced to produce smooth contour
Translating into usable math

• Smoothness
 – in drafting spline, comes from physical curvature minimization
 – in CG spline, comes from choosing smooth functions
 • usually low-order polynomials

• Control
 – in drafting spline, comes from fixed pegs
 – in CG spline, comes from user-specified control points
Defining spline curves

• At the most general they are parametric curves

\[S = \{ p(t) \mid t \in [0, N] \} \]

• Generally \(f(t) \) is a piecewise polynomial
 – for this lecture, the discontinuities are at the integers
Defining spline curves

- Generally $f(t)$ is a piecewise polynomial
 - for this lecture, the discontinuities are at the integers
 - e.g., a cubic spline has the following form over $[k, k + 1]$:
 \[x(t) = a_x t^3 + b_x t^2 + c_x t + d_x \]
 \[y(t) = a_y t^3 + b_y t^2 + c_y t + d_y \]
 - Coefficients are different for every interval
Coordinate functions
Coordinate functions

2D spline

coordinate function $x(t)$

coordinate function $y(t)$
Control of spline curves

• Specified by a sequence of control points
• Shape is guided by control points (aka control polygon)
 – interpolating: passes through points
 – approximating: merely guided by points
How splines depend on their controls

• Each coordinate is separate
 – the function $x(t)$ is determined solely by the x coordinates of the control points
 – this means 1D, 2D, 3D, … curves are all really the same
• Spline curves are **linear** functions of their controls
 – moving a control point two inches to the right moves $x(t)$ twice as far as moving it by one inch
 – $x(t)$, for fixed t, is a linear combination (weighted sum) of the control points’ x coordinates
 – $p(t)$, for fixed t, is a linear combination (weighted sum) of the control points
Trivial example: piecewise linear

• This spline is just a polygon
 – control points are the vertices
• But we can derive it anyway as an illustration
• Each interval will be a linear function
 – $x(t) = at + b$
 – constraints are values at endpoints
 – $b = x_0$; $a = x_1 - x_0$
 – this is linear interpolation
Trivial example: piecewise linear

• Vector formulation

\[x(t) = (x_1 - x_0)t + x_0 \]
\[y(t) = (y_1 - y_0)t + y_0 \]
\[p(t) = (p_1 - p_0)t + p_0 \]

• Matrix formulation

\[p(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \end{bmatrix} \]
Trivial example: piecewise linear

- Basis function formulation
 - regroup expression by p rather than t

$$p(t) = (p_1 - p_0)t + p_0$$
$$= (1 - t)p_0 + tp_1$$

- interpretation in matrix viewpoint

$$p(t) = \begin{pmatrix} t & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \end{pmatrix}$$
Trivial example: piecewise linear

- Vector blending formulation: “average of points”
 - blending functions: contribution of each point as t changes
Trivial example: piecewise linear

- Basis function formulation: “function times point”
 - basis functions: contribution of each point as t changes
 - can think of them as blending functions glued together
 - this is just like a reconstruction filter!
Seeing the basis functions

• Basis functions of a spline are revealed by how the curve changes in response to a change in one control
 – to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
 • what are $x(t)$ and $y(t)$?
 – then move one control straight up
Hermite splines

• Less trivial example
• Form of curve: piecewise cubic
• Constraints: endpoints and tangents (derivatives)
Hermite splines

• Solve constraints to find coefficients

\[
\begin{align*}
 x(t) &= at^3 + bt^2 + ct + d \\
 x'(t) &= 3at^2 + 2bt + c \\
 x(0) &= x_0 = d \\
 x(1) &= x_1 = a + b + c + d \\
 x'(0) &= x'_0 = c \\
 x'(1) &= x'_1 = 3a + 2b + c
\end{align*}
\]

\[
\begin{align*}
 d &= x_0 \\
 c &= x'_0 \\
 a &= 2x_0 - 2x_1 + x'_0 + x'_1 \\
 b &= -3x_0 + 3x_1 - 2x'_0 - x'_1
\end{align*}
\]
Hermite splines

- Matrix form is much simpler

\[\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ v_0 \\ v_1 \end{bmatrix} \]

- coefficients = rows
- basis functions = columns
 - note \(\mathbf{p} \) columns sum to \([0 \ 0 \ 0 \ 1]^T \)
Longer Hermite splines

• Can only do so much with one Hermite spline
• Can use these splines as segments of a longer curve
 – curve from \(t = 0 \) to \(t = 1 \) defined by first segment
 – curve from \(t = 1 \) to \(t = 2 \) defined by second segment
• To avoid discontinuity, match derivatives at junctions
 – this produces a \(C^1 \) curve
Hermite splines

• Hermite blending functions
Hermite splines

• Hermite basis functions
Continuity

- Smoothness can be described by degree of continuity
 - zero-order (C^0): position matches from both sides
 - first-order (C^1): tangent matches from both sides
 - second-order (C^2): curvature matches from both sides

- G^n vs C^n

![Diagram showing zero order, first order, and second order continuity](image.png)
Continuity

- Parametric continuity (C) of spline is continuity of coordinate functions
- Geometric continuity (G) is continuity of the curve itself
- Neither form of continuity is guaranteed by the other
 - Can be C^1 but not G^1 when $p(t)$ comes to a halt (next slide)
 - Can be G^1 but not C^1 when the tangent vector changes length abruptly
Control

• Local control
 – changing control point only affects a limited part of spline
 – without this, splines are very difficult to use
 – many likely formulations lack this
 • natural spline
 • polynomial fits
Control

• Convex hull property
 – convex hull = smallest convex region containing points
 • think of a rubber band around some pins
 – some splines stay inside convex hull of control points
 • make clipping, culling, picking, etc. simpler
Affine invariance

- Transforming the control points is the same as transforming the curve
 - true for all commonly used splines
 - extremely convenient in practice…
Matrix form of spline

\[p(t) = at^3 + bt^2 + ct + d \]

\[\begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ \times & \times & \times & \times \\ \times & \times & \times & \times \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} \]

\[p(t) = b_0(t)p_0 + b_1(t)p_1 + b_2(t)p_2 + b_3(t)p_3 \]
Hermite splines

- Constraints are endpoints and endpoint tangents

\[p(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ v_0 \\ v_1 \end{bmatrix} \]
Hermite basis
Affine invariance

- Basis functions associated with points should always sum to 1.

\[p(t) = b_0 p_0 + b_1 p_1 + b_2 v_0 + b_3 v_1 \]
\[p'(t) = b_0 (p_0 + u) + b_1 (p_1 + u) + b_2 v_0 + b_3 v_1 \]
\[= b_0 p_0 + b_1 p_1 + b_2 v_0 + b_3 v_1 + (b_0 + b_1)u \]
\[= p(t) + u \]
Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

- note derivative is defined as 3 times offset
- reason is illustrated by linear case
Hermite to Bézier

\[p_0 = q_0 \]
\[p_1 = q_3 \]
\[v_0 = 3(q_1 - q_0) \]
\[v_1 = 3(q_3 - q_2) \]

\[
\begin{bmatrix}
 a \\
 b \\
 c \\
 d
\end{bmatrix}
= \begin{bmatrix}
 -1 & 3 & -3 & 1 \\
 3 & -6 & 3 & 0 \\
 -3 & 3 & 0 & 0 \\
 1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 q_0 \\
 q_1 \\
 q_2 \\
 q_3
\end{bmatrix}
\]
Bézier matrix

\[p(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} \]

– note that these are the Bernstein polynomials

\[C(n,k) \ t^k \ (1 - t)^{n-k} \]

and that defines Bézier curves for any degree
Bézier basis
Convex hull

• If basis functions are all positive, the spline has the convex hull property
 – we’re still requiring them to sum to 1

 – if any basis function is ever negative, no convex hull prop.
 • proof: take the other three points at the same place
Chaining spline segments

- Hermite curves are convenient because they can be made long easily
- Bézier curves are convenient because their controls are all points and they have nice properties
 - and they interpolate every 4th point, which is a little odd
- We derived Bézier from Hermite by defining tangents from control points
 - a similar construction leads to the interpolating *Catmull-Rom* spline
Chaining Bézier splines

- No continuity built in
- Achieve C^1 using collinear control points
Subdivision

• A Bézier spline segment can be split into a two-segment curve:

 – de Casteljau’s algorithm
 – also works for arbitrary t
Cubic Bézier splines

• Very widely used type, especially in 2D
 – e.g. it is a primitive in PostScript/PDF
• Can represent C^1 and/or G^1 curves with corners
• Can easily add points at any position
B-splines

• We may want more continuity than C^1
 _ http://en.wikipedia.org/wiki/Smooth_function

• We may not need an interpolating spline

• B-splines are a clean, flexible way of making long
 splines with arbitrary order of continuity

• Various ways to think of construction
 – a simple one is convolution
 – relationship to sampling and reconstruction
Cubic B-spline basis
Deriving the B-Spline

- Approached from a different tack than Hermite-style constraints
 - Want a cubic spline; therefore 4 active control points
 - Want C^2 continuity
 - Turns out that is enough to determine everything
Efficient construction of any B-spline

- B-splines defined for all orders
 - order d: degree $d - 1$
 - order d: d points contribute to value

- One definition: Cox-deBoor recurrence

\[
b_1 = \begin{cases}
1 & 0 \leq u < 1 \\
0 & \text{otherwise}
\end{cases}
\]

\[
b_d = \frac{t}{d-1} b_{d-1}(t) + \frac{d-t}{d-1} b_{d-1}(t-1)
\]
B-spline construction, alternate view

• Recurrence
 – ramp up/down

• Convolution
 – smoothing of basis fn
 – smoothing of curve
Cubic B-spline matrix

\[p(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{bmatrix} \]
Other types of B-splines

• Nonuniform B-splines
 – discontinuities not evenly spaced
 – allows control over continuity or interpolation at certain points
 – e.g. interpolate endpoints (commonly used case)

• Nonuniform Rational B-splines (NURBS)
 – ratios of nonuniform B-splines: $x(t) / w(t); y(t) / w(t)$
 – key properties:
 • invariance under perspective as well as affine
 • ability to represent conic sections exactly
Converting spline representations

- All the splines we have seen so far are equivalent
 - all represented by geometry matrices

\[p_S(t) = T(t)M_SP_S \]

- where \(S \) represents the type of spline
 - therefore the control points may be transformed from one type to another using matrix multiplication

\[P_1 = M_1^{-1}M_2P_2 \]

\[p_1(t) = T(t)M_1(M_1^{-1}M_2P_2) = T(t)M_2P_2 = p_2(t) \]
Evaluating splines for display

• Need to generate a list of line segments to draw
 – generate efficiently
 – use as few as possible
 – guarantee approximation accuracy

• Approaches
 – recursive subdivision (easy to do adaptively)
 – uniform sampling (easy to do efficiently)
Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve

- Termination criteria
 - distance between control points
 - distance of control points from line
Evaluating with uniform spacing

• Forward differencing
 – efficiently generate points for uniformly spaced t values
 – evaluate polynomials using repeated differences